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Abstract Determining the similarity between images

is a fundamental step in many applications, such as im-

age retrieval and image browsing. Automatic methods

for similarity estimation often fall short when seman-

tic context is required for the task, raising the need

for human judgment. Such judgments can be collected

via crowdsourcing techniques, based on tasks posed to

web users. However, to allow the estimation of image

similarities in reasonable time and cost, the generation

of tasks to the crowd must be done in a careful man-

ner. We observe that distances within local neighbor-

hoods provide valuable information that allows a quick

and accurate construction of the global similarity met-

ric. This key observation leads to a solution based on

clustering tasks, comparing relatively similar images. In

each query, crowd members cluster a small set of images

into bins. The results yield many relative similarities

between images, which are used to construct a global

image similarity metric. This metric is progressively re-

fined, and serves to generate finer, more local queries

in subsequent iterations. We demonstrate the effective-

ness of our method on datasets where ground truth is

available, and on a collection of images where semantic

similarities cannot be quantified. In particular, we show

that our method outperforms alternative approaches,

and prove the usefulness of clustering queries, and of

our progressive refinement process.

1 Introduction

In recent years, there have been many advances in im-

age capturing capabilities of mobile devices, encourag-

ing end users to capture more images of higher quality.
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As a result, there is an abundance of constantly growing

collections of images, both on personal computers and

on websites such as Facebook, Flickr and Instagram.

Such vast collections require efficient methods for im-

age retrieval and image browsing, which allows users

to quickly locate images suitable for their needs. An

important component in such methods is a similarity

metric between images, which should be aligned with

user perception and intuition.

State-of-the-art analytical methods for computing

image similarity metrics fall short when user intuition

is based on a broad semantic context. This may include

elusive relations such as a similar emotion or sensation

evoked by the images (e.g., images that convey “fear” or

“comfort”); images of things which are semantically re-

lated (e.g., different types of garden furniture); likeness

between the photographed people; and so on. Consider,

for instance, the similarity between the movie posters in

Figure 1. Identifying such similarities is usually easily

done by a human observer, but poses a hard computa-

tional problem nonetheless.

The natural solution is thus gathering information

about semantic similarities between images from peo-

ple, for example using a crowdsourcing technique.1 This

approach was taken in recent work [8,10,12] to collect

style similarity measures. The typical comparison task

that the crowd performs is of the following form: given

three images A, B, and C, choose whether A is more

similar to B or to C (a triplet query). Assuming con-

sistent query responses, querying every image triplet

yields the full relative similarity metric over the set of

images. However, the number of triplets is prohibitively

1 Crowdsourcing is a general name for processes that in-
volve posing many small-scale tasks to the crowd of web users,
and piecing together the crowd’s answers to fulfill a larger-
scale task, such as constructing a large knowledge base.
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(a) (b)

Fig. 1: Nearest neighbors of the center image in a collection of movie posters, computed using (a) image descriptors,

and (b) crowdsourced queries. Smaller images mark farther neighbors.

large. Thus, typically only a sample of the triplets are

queried and the rest are estimated based on extracted

image features [8,10,12].

Another challenge in this respect is that people often

need context in order to perform comparison tasks. For

example, consider the triplet in Figure 2. Is the image

of a bridge in London (b) more similar to another image

of a different bridge in London from a different angle

(c) or to an image of a Parisian bridge from the same

angle (a)? In a larger context, it often becomes clearer

which option is more reasonable, e.g, in the context of

Figure 3 image (b) is more similar to (c) than (a).

In this work, we propose an alternative approach for

learning image similarities based on clustering queries

posed to the crowd. Instead of queries of three images,

crowd members are given a small set of images and are

asked to cluster them into bins of similar images us-

ing a drag-and-drop graphical UI (see Figure 4). While

a single clustering task requires more effort than com-

paring three images, our approach has two important

advantages. First, the results of a single clustering task

provide a great deal of information that is equivalent

to many triple comparison tasks: images placed in the

same bin are considered closer to one another than to

images in other bins. Second, each query provides crowd

members with additional context that assists them in

performing a more faithful and meaningful comparison.

A key observation of this work is that a similarity

metric can be constructed more efficiently by performing

comparisons on similar images rather than non-similar

ones. This is true in particular in the context of seman-

tic similarities, where local similarities are oftentimes

more meaningful. We build on this observation in the

development of a novel, adaptive algorithm that aims to

generate queries that are as local as possible. The chal-

lenge here is that similarities are of course unknown

in advance. Thus, our algorithm works iteratively, such

that at each phase we generate and pose to the crowd

some clustering queries. At first, given no prior knowl-

edge about image similarity, one cannot do much better

than posing random queries. But as information is col-

lected, our algorithm progressively refines the queries

to focus on similar images in a narrower local neigh-

borhood. The local similarity comparisons collected at

each phase are embedded in Euclidian space to obtain a

refined estimation for the global similarity metric. This

refined metric is then leveraged for computing more

locally-focused queries in the next phase. The progres-

sive method thus efficiently converges to a meaningful

similarity estimate.

Evaluation and experimental study. To test the effi-

ciency of our approach, we implement our technique

in a prototype system, and use it to conduct a thor-

ough experimental study, with both synthetic and real

crowd data. First, we test our technique over two image

datasets where the ground truth is known, examine the

results and compare them to a baseline approach that

uses the same number of queries but chooses them ran-

domly. Second, we compute the k-NN images for real-

world image datasets, where the ground truth is un-

known, and evaluate the results manually. Last, in order

to isolate and examine the effect of different parameters

of the problem, such as number of phases and queries,

we vary these parameters in a series of synthetic exper-

iments. Our experimental results prove the efficiency of

our approach for computing semantic image similarity

based solely on the answers of the crowd, while using a

relatively small number of clustering queries.

2 Related Work

The classification of images is a well-studied problem.

A common paradigm is based on image descriptors,

such as the color histogram of images, SIFT based de-

scriptors [7], or GIST descriptors [11]. The distance be-

tween two images is then defined as the Euclidean dis-
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(a) (b) (c)

Fig. 2: Without context, similarity between images can

be ambiguous.

Fig. 3: With context, it can be seen that images belong

to two distinctive locations, London and Paris.

tance between the image descriptors, on top of which

different machine learning techniques can be employed

to find similarities or clusters of the images (e.g., [17,

23]). Other methods employ a bag of features (BoF) ap-

proach, using either visual segments [14] and/or textual

annotations, either attached to the images manually or

from the textual context of a web page (e.g., [17,23]).

However, such methods fall short when classification

relies on semantically-rich features, which may be hard

to learn from the images, and may only be partially

reflected in the labels. For instance, the images of Lon-

don and Paris bridges contain many semantic features

such as the situation, style, building materials and gen-

eral atmosphere. The images and labels describing them

may not capture all of these features, nor their relative

importance for determining similarity.

The problem of lacking semantic features can be al-

leviated by semi-supervised learning methods that rely

on manual labeling of a small set of image pairs or

triplets, rather than per-image labels for the entire set.

A large body of work has attempted to classify im-

ages using such methods, typically, by pair-wise labeling

consisting of equivalence (and sometimes inequivalence)

constraints, i.e., whether (or not) the pair belongs to the

same class [1,2,19,21]. Triple-wise constraints are more

relevant to relative comparisons of images, and as ex-

plained in the Introduction, they compare the distances

of two image pairs [5,8,10,12,16]. The constraints can

then be used to learn a distance metric between images.

In particular, the work of [16] focuses on adaptively se-

lecting optimal triplets based on crowd input. In the

recent work of [8,10,12], use triple-wise comparisons in

the spirit of [16] in order to learn about style similari-

ties from the crowd. While these studies highlight the

need in crowd-provided similarity comparisons, the use

of triplet comparisons has shortcomings that our work

addresses, as mentioned in the Introduction: the triple-

wise approach requires many crowd tasks, and users are

not given context for comparison. These shortcomings

were also noted by [20], a study that focuses on re-

designing the user interface to derive more image com-

parisons from each crowd task. This is done by asking

users to select the X most similar images to a given

image, out of Y images. The new interfaces of [20] form

a step forward from triplets, but in contrast with our

work, their study does not consider how to effectively

choose images to compare.

Another work highly related to ours is Crowdclus-

tering [6], which considers clustering images with the

crowd, as follows. Each crowd member obtains a sam-

ple of a few images (a query) and classifies them into

groups. This input is used to train a Bayesian model

which captures the ways in which different crowd mem-

bers may classify each image. This work resembles our

in letting the user cluster a small set of images, and

also in the idea of refining the clustering results by re-

applying the technique on the obtained clusters. How-

ever, their technique is not designed to compute image

similarities. In contrast, the progressive refinement that

we employ allows converging faster to determining im-

age similarities. We compare the performance of our

techniques with [6] in Section 4.

In [6] images can only be classified if they appeared

in at least one query, thus, the work of [22] suggests to

only obtain query answers for a small fraction of the

data, and use dedicated matrix completion techniques

to complete the missing classifications. This work is or-

thogonal to ours, and can be employed in our case if the

number of queries that can be asked is small relative to

the number of images.

Crowdsourcing has been employed for other tasks

related to ours such as record matching based on im-

ages [9], grouping and top-k [4], and entity matching [18].

However, none of theses solutions can be applied in an

effective manner for estimating image similarities. E.g.,

k-NN may be viewed as finding the top-k most similar

images for each image; however, applying the method

of [4] for each image separately is inefficient.

3 Algorithm

We next describe our method of generating queries to

the crowd based on an estimated similarity metric, and

of refining the similarity metric based on answers from

the crowd. In light of our key observation from the In-

troduction, queries involving images from the same lo-
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(a)
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Fig. 4: An example of the clustering interface. (a) The

user is presented with 20 images to cluster into the four

bins on the right. (b) The bins may contain as many

images as necessary. When all images are clustered, the

user can submit the query and receive another one.

cal neighborhood are indeed more effective for deter-

mining the global similarity metric.

The queries that our algorithm generates are clus-

tering queries, namely, the algorithm selects sets of nq
images. The answer obtained from crowd members is a

division of this image set into nc clusters. The crowd is a

relatively expensive resource in terms of latency, mon-

etary cost (if crowd members are paid to answer the

queries) and human effort. Therefore, in many practi-

cal cases, the total number of queries that can be asked

is restricted by a predefined budget. Given such a bud-

get, the goal of the algorithm we develop is to utilize

the queries in the best way possible, by considering only

local neighborhoods. This inevitably yields an iterative

process, where local neighborhoods change according to

queries results.

Our method estimates local distances by maintain-

ing an embedding in a Euclidian space of the entire set,

in which the distances are calculated. The embedding is

initialized randomly, and local neighborhoods are pro-

gressively improved. The embedding ensures that even

distances that were not queried are consistent with the

partial information derived from queried distances. To

improve the embedding of local neighborhoods, we pose

queries to the users in small batches, and update the

embedding after each batch. Interestingly, querying lo-

cal neighborhoods of the embedding proved beneficial

even in early stages when the images are not necessar-

ily semantically close, since such queries provide many

constraints on the same neighborhood. In addition, in

each iteration we wish to preserve the close neighbors

which are already semantically similar. Even in a ran-

dom embedding, local neighborhood based queries help

detect cases where some neighbors are also semantically

similar and maintains them.

The main steps of the algorithm are illustrated in

Algorithm 1: As input, the algorithm takes budget –

the total number of allowed queries and batch size –

the number of queries to be generated at every itera-

tion. The results of the queries are integrated into the

embedding (E) and the induced global distance metric

(D). The output of the algorithm is the distance metric

computed based on the last, most refined embedding.

Algorithm 1: CrowdSter(budget, batch size)

1: E = EmbedData() // random embedding

2: num of queries = 0

3: while num of queries < budget do

4: Q = SelectQueries(E, batch size)

5: R = RunQueries(Q) // using the crowd

6: D = DistanceFromEmbedding(E)

7: D = UpdateDistances(D, R)

8: E = EmbedData(D)

9: num of queries += batch size

10: end while

11: D = DistanceFromEmbedding(E)

12: Output D

Clustering query. We define a crowd query and its an-

swers as follows. For the full set I of images, a queryQ is

a subset of I containing nq images. The crowd’s answer

is a division of Q into disjoint clusters C1, . . . , Cnc ⊆ Q.

From these answers we extract similarity comparisons:

given two images x, y in cluster Ci, and a third image z

in a different cluster Cj , we infer that∆(x, y) < ∆(x, z),

where ∆ represents the similarity metric. Therefore, as

nq increases, we obtain more comparisons. However, the

number of images in the query should be small enough

to allow a crowd member to view them [9]. In our ex-

periments, we found that nq = 20 is a good balance of

this tradeoff between effectiveness and simplicity. Fol-

lowing this, we found that setting the number of clusters

nc to 4 is optimal, since it balances between inferring

more comparisons (smaller nc values) and quickly prun-

ing the less similar images (larger nc values).

Generating queries. Queries are generated in our algo-

rithm based on the embedding from previous phases. In

each phase, we generate queries that (a) are local, and
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(b) cover the set of images as evenly as possible. To do

so, we sample random images uniformly while making

sure they are not nearest neighbors of each other. When

no such samples remain we start over. For each image,

we find its k nearest neighbors in the given embedding.

Then, out of these neighbors we sample a random sub-

set of size nq and use it as the next query.

Embedding. We maintain an embedding of all images

in the dataset, which is gradually improved with each

batch of queries. The embedding infers a consistent dis-

tance between every pair of images, which is used in

the next phase. Before the first queries are sent to the

users, the images are embedded into a Euclidian space

using a uniform random distribution. To improve the

embedding according to the query results, we calcu-

late the distance between each pair of images from the

embedding, update the distances accordingly, and em-

bed the images again using the updated distances. This

consolidates the updated distance and resolves any in-

consistencies among them. To compute the embedding

we use multidimensional scaling (MDS), whose input is

the distance between each pair of images.

More specifically, we want to find an embedding by

taking into account only distances that we have infor-

mation of (via query results), ignoring all other dis-

tances. For this we use Sammon Projection [13], which

is a multidimensional scaling technique that computes

an embedding using a stress function and gradient de-

scent. The weighted stress function can take into ac-

count the relevant distances and ignore other distances

by giving them a very small weight. All weights are ini-

tialized to a very small value ε. In each phase, we set the

weight for each updated distance to 1. Distances that

were updated in previous phases maintain a weight of

value 1, so once a pair of images is queried its distance

is always taken into account when computing the em-

bedding in subsequent phases.

Updating the distance. To update the distance, all the

query results in the batch are aggregated and analyzed.

For each pair of images in each query, we refer to a query

result as positive if the images were assigned to the same

cluster, and negative if the images were assigned to dif-

ferent clusters. The distance between a pair of images

is shortened if the pair has more positive than nega-

tive query results, and made longer if the pair has more

negative query results. The distances between pairs of

images for which there was a tie and pairs of images

that did not appear in the same query are not affected.

Distances are shortened by dividing by β and are

made longer by multiplying by β. In our experiments

β is set to 4. Note that we do not take into account

the number of times a pair of images appeared in the

same query. For example, a pair of images that has

two out of two positive query results is updated in the

same manner as a pair of images that has three out of

four positive query results. Since the phases tend to be

short, the probability that the same pair of images will

appear in many queries is small, and inferring from the

exact ratio between positive and negative results is too

sensitive to randomness.

4 Experiments

To evaluate the efficiency of our approach, we conduct

three sets of experiments, described below. First, to ver-

ify the correctness of our approach, we conduct a set of

small-scale experiments with real crowd but for a data

set where the ground truth is known. This ground truth

allows evaluation of the result quality. Second, we test

the practicality of the approach for semantically-rich

image similarities, again using real crowd and larger

sets of images, where the ground truth is unknown.

Finally, to further investigate each component of our

solution, we conduct synthetic experiments where the

ground truth similarity is known, and the crowd an-

swers to queries are simulated accordingly. We vary dif-

ferent parameters of our system, and observe the effect

on the output quality. In all sets of experiments, we

further compare the results we obtained to alternative,

baseline algorithms.

– Random: An algorithm which randomly selects the

questions to the crowd, equivalent to executing our

algorithm in a single phase.

– Crowdcluster: An algorithm is using the method

of [6]. The results of this method are targeted to

identify clusters, but also include a mean spatial lo-

cation for every image, which we use as an alterna-

tive to our embedding.

– Feature-based: An algorithm that estimates the

similarity of images based on automatically extracted

image features, which serves as a baseline where

ground truth is not available.

We now provide details about our implementation,

and then describe our experimental results.

Implementation and Crowd UI Our crowdsourcing sys-

tem includes a dedicated, user-friendly crowd interface,

which displays the queries that are computed in the

back-end using our algorithm or alternative ones. The

UI of the system is implemented on the Google App En-

gine platform2 using AJAX and GWT. The back-end

analysis of the crowd answers and the computation of

2 Google App Engine. https://cloud.google.com/

appengine/docs
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Fig. 5: The number of correct 10-NN images based on

real crowd input, comparing the results of our algorithm

with the two baseline alternatives.

the next queries to be posed to the crowd was written

in MATLAB R2014b. The image datasets were stored

on the Google Cloud Datastore.3

A screenshot of the UI is shown in Figure 4. Initially,

we display 20 images on the left-hand side of the screen

(the query), and the crowd member is asked to drag and

drop the images in one of the 4 right-hand side bins (and

also move images between bins). Crowd members can

also decide to leave images outside of any bin if they

are unrelated to any of the other images, in which case

our algorithm only infers that the leftover images are

less similar to the images within the bins.

In the real-crowd experiments described below, the

queries were executed using this UI. To recruit crowd

members we have distributed the link to the Web UI

in social networks, and to students in our university. In

practical usage of the system, crowd members may be

recruited to perform the queries for a small fee.

4.1 Crowd Experiments with Ground Truth

As a sanity check, we have executed our algorithm over

two sets of images where the ground truth is known,

and for two different computation tasks: top-k and clus-

tering. The experiments were conducted with about 10

crowd members4 crowd members that answered both

the baseline algorithms’ and our algorithm’s queries.

Top-k similar colors. The simplest set of images that

we have used is a set of 300 solid colors, whose ground

truth similarity can be measured, e.g., by embedding

the colors into 3-dimensional space according to their

RGB or HSL values (we have used RGB). The goal

was to compute, for each color, the k-NN most similar

3 Google Cloud Platform – Datastore. ttps://cloud.

google.com/datastore/
4 We were only tracking IPs, so the number of different

crowd members is estimated.

(a) (b) (c)

(d) (e) (f)

Fig. 6: Heatmaps displaying the accuracy of clustering

for the font dataset. Figures (a)-(e) illustrate the cluster

quality after phases 1-5 of our algorithm, respectively,

and 123 queries in total. For comparison, Figure (f)

displays the cluster quality after 123 random queries.

(a) (b)

Fig. 7: Two examples for clusters produced for the same

letter “a” (on the top left), based on the similarity met-

ric of (a) our algorithm, and (b) random baseline.

colors for varying values of k. We have compared the

results of our algorithm to the results of the baseline

random and crowdcluster algorithms, the same number

of queries overall in the three algorithms.

The results of this experiment indicate that our al-

gorithm identifies a larger percentage of the nearest

neighbors for a larger percent of the images. Figure 5

illustrates the 10-NN results for the three algorithms us-

ing 235 queries overall, and 5 phases of our algorithm.
For each algorithm, we show a histogram of intersec-

tion between the true 10-NN (according to the ground

truth) and the computed 10-NN. Note that crowdclus-

ter slightly outperforms the random baseline, but our

algorithm generally identifies a larger fraction of the

true 10-NN images, “pushing” the histogram rightwards

(red bars). Overall, our algorithm identifies 43.4%-50%

more of the true nearest neighbors than the baseline al-

ternatives, which demonstrates the effectiveness of our

progressive refinement approach.

Clustering fonts. In this experiment we have tested the

ability of our algorithm to cluster letter images into

fonts, where the ground truth is the font to which the

letters belong. We have used 180 letters of 12 different

fonts, and asked crowd members to evaluate the simi-

larity of letters with respect to their appearance. The

results have been used to compute 12 letter clusters,

which should ideally match exactly the 12 original fonts.

Our algorithm has used 123 queries in total over 5 re-
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Dataset Images # Success % Avg. Diff.

Movie posters 910 87.2% 2.5
Chairs 1024 76.2% 3

Table 1: Real-world dataset results

finement phases. For comparison, we have executed the

same task with 123 random queries.

Figure 6 illustrates the experimental results and in

particular the progressive refinement, via heatmaps that

represent the cluster quality after each of the 5 phases.

The results of the algorithm are almost perfect, with

only 1.1% errors (two letters). In comparison, the ran-

dom query selection resulted in around 60% errors, and

was outperformed by our algorithm already after the

second phase. Figure 7 displays an example cluster pro-

duced by our algorithm, and the corresponding cluster

produced by the random baseline. The latter cluster

makes sense in the broader context of the fonts, since

it contains only handwriting fonts; but the progressive

refinement in our method allows distinguishing also be-

tween the different handwriting fonts.

4.2 Crowd Experiments with Real-world datasets

Next, we have executed experiments with two real-world

datasets where the image similarity is highly seman-

tic and therefore image features may not be sufficient

for estimating this similarity. The first dataset consists

of 910 images of movie posters downloaded from the

movie pages in Wikipedia, where similarity is usually

based on genre, style of the poster, characters, and so

on. For this set we have collected 547 query answers

from about 60 crowd members.

The second dataset consists of 1024 chairs, of differ-

ent types and angles from the ShapeNet dataset [15].

Similarity in this dataset is based, among others, on se-

mantic features such as the usage of the chairs, the ma-

terial they are likely to be made of, and their assessed

level of comfort. For this set we have collected 559 query

answers from about 60 crowd members.

As in many real-life scenarios, for these sets there

does not exist a ground truth or a gold-standard. Hence,

we have manually examined the results of our algorithm

by sampling images with with their k-NN images, and

comparing these results with the results obtained by au-

tomatic means based on image features. For the movie

dataset we have used features based on the following

color descriptors. First, a color histogram with 64 bins,

four bins for each of the RGB channels. Second, an im-

age thumbnail of four by four pixels, or a total of 16

RGB values, i.e. a vector of length 48. The two descrip-

(a) (b)

Fig. 9: Visualization of the images that appeared in the

same query as the image marked in gold. The images

are ranked by the number of mutual queries and the

top 10% images are colored red. (a) Mutual queries af-

ter 400 random queries. (b) Mutual queries after 400

queries using our algorithm.

tors were concatenated and treated as a single vector

for the distance calculation. For the chair dataset we

have used features derived from HoG descriptor [3].

Table 1 summarizes the results of our manual ex-

amination, based on 50 random “seed” images sampled

from each of the datasets. For each seed image, we took

its 10 NN images from the dataset according to both

our algorithm and the feature-based baseline. Each of

the images was labeled “very similar”, “similar” and

“unrelated” with respect to its seed image. In analyz-

ing the results, we have first counted the number of

seed images for which our algorithm succeeds to find

a greater number of similar images than the baseline,

breaking ties by the number of “very similar” images.

The results are displayed in the Success % column of

Table 1. Then, to quantify by how much we outperform

the baseline, we have computed the average difference

between the number of similar images our algorithm has

discovered and the baseline (the Avg. Diff. column).

We illustrate the observed differences via the following

examples.

Figure 1 displays the 10-NN images (a) computed

by our algorithm based on clustering queries and (b) ac-

cording to color descriptors. The seed image is displayed

in the middle. In this case, the results of our semantic

similarity estimation retrieve movies of the same genre

(animated adventure films). Within that genre, most

of the closest neighbors (four out of the top five) have

the same visual appearance (blue background) as the

seed image. On the other hand, the movies retrieved by

using image descriptors have a similar visual appear-

ance in terms of color scheme and mood but are very

different semantically. Note that while we use rather

simple image descriptors, even extremely sophisticated

descriptors would fail to associate posters of movies in

the genre which has different visual appearance with

the seed image.
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(a) (b)

Fig. 8: Nearest neighbors of the center image in a collection of chairs, computed using (a) HoG descriptor, and

(b) crowdsourced queries. Smaller images mark farther neighbors. Less similar chairs are highlighted.

Figure 8 displays similar results for the chair dataset,

but where the baseline k-NN results (a) are computed

according to HoG descriptor. The seed chair is a school

chair with curvy tubes supporting the back. The 10-

NN chairs given by our algorithm are all school chairs

and many of them contain similar style elements such

as curvy tubes. In contrast, the chairs computed using

the HoG descriptor seem superficially similar (and also

have the same orientation) yet include office and din-

ning room chairs, and vary more in their style (the less

similar chairs are highlighted in the figure).

Figure 11 displays a few more selections of k-NN

results for movie posters and chairs. In each set the top

left image is the seed and its 7 nearest neighbors are pre-

sented from left to right. In many cases, the similarity

between images can be both semantic and visual. We

have deliberately selected cases which present a purely

semantic relation which may be very hard or impossible

to capture using image descriptors. The semantic con-

nection between movie posters vary greatly, and spans

movies from the same genre (a), posters that have dom-

inant typographic elements (b), posters of old movies

(c), or the same expression of the faces in the poster (d).

The semantic connection between chairs may be simi-

lar style elements (e), similar overall shape (f), similar

function (g) or even chairs with wheels (h). The k-NN

results for all movie posters and chairs in the dataset

can be seen in the supplemental material.

The results of this experiment indicate that our al-

gorithm is able to capture nontrivial semantic depen-

dencies between images, relying only on the answers of

the crowd. We note that in the examples we have shown,

textual context such as a “wooden school chair” label

could have also been leveraged, for enhancing the im-

age similarity estimation or for creating an improved

initial embedding; in this paper, however, we focus on

algorithms that are purely based on crowd answers, and

leave such optimizations for future work.

4.3 Synthetic Experiments

We next provide further analysis of our algorithm via

synthetic experimental results. The experiments have

been conducted on datasets with available ground truth,

and with answers from a simulated crowd. The simu-

lated answer of the crowd for a given query have been

computed by a k-means algorithm, which has split the 20

images in the query into 4 clusters. Using synthetic an-

swers allows us to test the performance of our algorithm

in a variety of scenarios.

Effect of locality. In the Introduction, we have stressed

the importance of using queries about local neighbor-

hoods of images. To test this claim in isolation, we have

conducted a dedicated synthetic experiment, as follows.

We have used a set of 1000 colors sampled uniformly.

Since the true similarities are known for this image set,

we could vary the locality of queries: for each query

we started from a seed image, then sampled the rest

of the images from within a certain distance from the

seed image. We have then used the results of the queries

to compute the embedding as usual. We have observed

an almost linear decrease in the average precision of

the computed 10-NN images as the distance between

images in each sample increases.

Co-occurrence of similar images. One of the indications

for the effectiveness of the progressive refinement in our

algorithm is the frequent co-occurrence of similar im-

ages in the same query. Ideally, as the similarity met-

ric that we compute converges to the true one, similar

images are more likely to appear in a query together.

Moreover, the distance between pairs that appeared to-

gether in many queries is expected to be more accurate,

since more data is available. Since the budget of queries

is limited, each pair that is queried comes at a cost of

another pair for which there will be less available infor-

mation. We show that our algorithm effectively favors
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Fig. 10: Number of correct 10-NN images as a function of number of queries (left) and number of phases (center),

and versus a triplet-based algorithm (right).

pairs which are close to each other and therefore need

more accurate information.

Figure 9 illustrates this. We simulate a two dimen-

sional embedding of images, where each point repre-

sents an image in the dataset. The distance between

each pair of points (or images) is taken from the em-

bedding, which simulates ground truth similarity. The

dataset contains 400 images, and we ran 400 simulated

queries, once using our algorithm and once with random

queries. We then select an arbitrary image (marked in

gold) and count how many times each image in the

dataset has co-occurred with it. We rank the images

according to their mutual queries count. The top 20

images (5% of the dataset) that were queried together

the most with the golden image are colored bright red.

The next 20 images (5%) are colored dark red. The rest

of the images (360 or 90%) are colored light blue.

Figure 9(a) shows that using random query selec-

tion, the images that co-occurred the most with the

golden image are randomly scattered, as expected. In

contrast, using our algorithm to select the queries (Fig-

ure 9(b)), the frequently co-occurring images are cen-

tered around the golden image. Evidently, we do not

spend queries on pairs which are known to be far away,

since their distance from each other matters less and is

expected to be less accurate. This allows our algorithm

to better estimate the relative local similarities, and use

them to estimate the global similarities.

Varying the algorithm parameters. We next execute our

algorithm while varying the value of two parameters:

the total number of queries and the number of phases,

to demonstrate the impact of these parameters on the

query results. Figure 10(right) illustrates the effect of

varying the total number of queries, for a synthetic 1000

random color dataset, and 5 phases of our algorithm.

As expected, there is a positive correlation between the

number of queries we use and the quality of the re-

sults, measured by the size of the intersection between

the true 10-NN images and the 10-NN images that we

compute. This means that with a greater budget we can

improve the estimation of the similarity metric.

Figure 10(center) illustrates the impact of number

of phases on the quality of the results (using the same

image set as above, the same quality metric, and 1200

queries overall). The number of phases ranges from 0

(which is equivalent to random query selection) to 5.

Note that increasing the number of phases increases the

result quality, since recomputing the embedding more

frequently allows creating better queries. However, the

margin by which the quality improves decreases, so the

difference between 4 and 5 phases is small.

Queries versus triplets. As described in the Introduc-

tion, a common solution for collecting image compar-

isons from the crowd is based on triplet queries, i.e.,

queries of the form “Is image A more similar to im-

age B or to image C?”. We have already noted that
one advantage of our approach over the triplet-based

one is that clustering queries provide context for com-

parison. In this synthetic experiment we ignore con-

text, and focus on the number of questions needed for

each type of solution. As shown in Figure 10(right), our

algorithm’s performance using 1200 queries is compa-

rable to the triplet-based algorithm’s performance us-

ing 84000 queries.

5 Conclusion

In this paper, we have presented an efficient approach

for estimating the similarity of images, based solely on

the input of the crowd. Our system progressively re-

fines the images posed to the crowd, in order to ob-

tain similarity comparisons between images in the same

neighborhood, allowing faster convergence to an accu-

rate similarity metric. In our experimental study we

have used a particularly small number of queries, and
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 11: Example of K-NNs of images from the movie posters and chairs datasets.

have shown that even on this basis we can obtain a fair

estimate of the semantic similarity.

Limitations and future work. This work focuses on in-

put from the crowd alone. However, it is often the case

that some clues for the semantic similarity of images

are available in the form of image features or textual

context. Even if these clues do not account for the full

range of semantic connections, it would be interesting

to examine how to leverage them in conjunction with

our algorithm. This direction may benefit the method’s

scalability, since in very large image sets, the affordable

number of queries might not even be linear in the size

of the set. A straightforward approach for integrating

semantic clues would use our algorithm to learn simi-

larities for a small fragment of the image set, and then

apply machine learning techniques to complete the rest,

using features based on semantic clues (in the spirit of

Lun et al. [8], Saleh et al. [12], and Yi et al. [22]). A

more interesting solution may further combine the clues

within the query generation phases. This is non-trivial,

since the usage of other estimates can potentially cause

semantically similar images to be overlooked.

Another challenging direction for future work in-

cludes a more elaborate treatment of the uncertainty

stemming from the crowd. Crowd members often dis-

agree on the similarity of images, or even provide some

inconsistent answers. So far, we have assumed that the

embedding we perform mitigates the impact of such

inconsistencies. However, we may want to explicitly ac-

count for inconsistencies, by a probabilistic modeling

of the crowd’s behavior, e.g., as done in [6] for the pur-

pose of clustering. It would thus be interesting to de-

velop probabilistic models dedicated for the learning of

a similarity metric. In particular, this method should

support efficient computations, due to the interactive

nature of our algorithm.
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